DATA DESCRIPTION

PTV Validate Germany

Release R2023_V1.0

Karlsruhe, 14.02.2024

1	Introdu	ction	3
2	Determi	ination of the data	4
	2.1	Traffic cells and traffic demand	4
	2.2	Road network	4
	2.3	Attribution of the routes	4
	2.4	Consideration of European through traffic	5
	2.5	Connection of the traffic cells	5
	2.6	Rerouting and calibration	5
3	General	I information on the data record	6
4	Content	t and field description	7
	4.1	Standard specification	7
	4.2	Further specifications1	0

1 Introduction

The Traffic Volume Model Germany is based on the nationwide traffic model Validate developed by PTV GmbH and can be linked to the road network of the product Digital Data Streets. The data is based on model calculations in which traffic demand (journeys with origin and destination of cars and trucks) is derived from structural data in the first step. In a second step, this traffic is distributed ("rerouted") to the road network using proven algorithms. Procedures of this type are common in the transport industry worldwide and are widely used for transport planning in federal, state and local governments. The availability of powerful computers, high-resolution digital traffic networks and the know-how gained by PTV in this field since 2005 make applications of this kind possible today.

The average daily traffic volume is available directionally for all routes of category 1 to 6 of the Digital Data Streets' road network.

The traffic volume data are not based on traffic counts, but were calculated with special algorithms and are therefore to be understood as model values. The model calculation also includes data such as population figures, workplace data by sector or commuter movements. Due to the modelling, implausibilities may occur in individual cases. In exceptional cases, there are segments for which a classification could not be carried out.

The model values have been validated with the help of numerous counting points. This was done with

- Count values from more than 2900 official permanent counting stations of the Federal Highway Research Institute (Bundesanstalt für Straßenbau BASt) from 2022/2023.
- Data from numerous cities and regions collected within the framework of various PTV projects.

Data status:

The Traffic Volume Model R2023_V1.0 refers to Digital Data Streets' road network Version R2021_V2.0 and Validate Version 7.5.1.

2 Determination of the data

2.1 Traffic cells and traffic demand

In order to achieve a meaningful mapping of traffic flows in Germany, the study area must be divided into so-called traffic cells. A total of about 20700 traffic cells are used, with about 280 cells covering other European countries. The traffic cells in Germany represent an average of about 4,000 inhabitants. In addition, the 100-meter grid cells introduced for the 2011 census are used to ensure that the traffic from the traffic cells is fed into the road network in the exact position and percentage.

From a variety of data sources, such as the officially available structural data of the municipalities and market cells as well as population group-specific traffic behaviour data, the traffic flows are calculated as a model with the help of a PTV traffic model. This takes into account typical travel distance distributions for the different trip purposes such as shopping, work, holiday trips, etc. Empirical data such as the commuter data of the Federal Employment Agency, which contains the commuter relations between all municipalities in Germany, calibrates and improves the matrix of transport relations.

2.2 Road network

The basis for the network creation is the deep-digitised navigation network from the Digital Data Streets, which are based on the street data from HERE (formerly NAVTEQ). From this, the superordinate roads are selected which absorb the main traffic volumes (road categories 1-6). Most of the secondary roads of the subordinate traffic network, which have a purely developmental character (category 7 to 8), are not taken into account. This results in a network with approx. 6.4 million directed routes. It contains all routes on which significant traffic flows occur.

The network is digitised nationwide at the same depth, but can be refined for regional applications by adding further levels.

2.3 Attribution of the routes

In order to be able to carry out a model calculation on the network, the routes must be enriched with traffic data. In particular, the capacity and speed at free flow must be known for all routes. For this purpose, each route is typified on the basis of a series of characteristic features (e.g. speed limit, number of lanes, connection function, construction type) and attributed accordingly.

2.4 Consideration of European through traffic

In order to be able to map through traffic, the German network is connected to the European network. This network has approximately the same resolution near the border as the German network and becomes thinner with increasing distance (a total of approx. 1.5 million routes).

2.5 Connection of the traffic cells

In order for demand to be distributed on the network, a connection between the traffic cells and the network must be established. These so-called connections are generated, among other things, with the help of the market cells. The known traffic volume of a traffic cell is thus fed proportionally into the subordinate network based on the population figures and jobs of the individual market cells. This achieves a finer distribution of traffic that corresponds to the origins and destinations.

2.6 Rerouting and calibration

The traffic flows of the origin-destination matrix (traffic demand) are distributed to the traffic network using the traffic reallocation method. I.e. for each origin-destination relationship, the best routes are searched for, taking into account the traffic load. This traffic reallocation is calculated for trucks and cars. As the traffic load increases, the travel times on the different routes change, which leads to new route choices and ultimately to an even, realistic distribution of traffic in the network. The apportionment is carried out with the proven PTV Visum Software by PTV GmbH. Existing measurement data of road loads (e.g. official counting data from permanent counting points) are used to adjust the calculated results to the real measured ones. The calibration methodology used here also allows the real measurement errors and daily fluctuations in traffic to be taken into account in the equalisation calculations.

The result is that for each of the approx. 5.9 million network routes in Germany, there are direction-related load values for the average working day for trucks and cars.

3 General information on the data record

Product name:	PTV Validate Germany	
Content of the data record:	Average daily traffic volume for the interurban road network from the PTV Digital Data Streets Germany	
Coverage:	Germany	
Subset possible:	Yes	
Source:	HERE; PTV Planung Transport Verkehr GmbH, Karlsruhe; PTV Logistics GmbH, Karlsruhe; et al.	
Data type:	Factual data	
Release:	R2023_V1.0	
Number of data records:	2.980.928	
Standard data format:	MS Access, MapInfo TAB	
Language:	German	

4 Content and field description

4.1 Standard specification

Specification	Column name	Content	Description	Data type
Standard	ID	Unique identification number for the object	Corresponds to the ID from the "Strassen" layer of the Digital Data Streets	Integer
Standard	TypHin	Road type in direction From → To regarding the nodes. The type stands for the driving speed that can be achieved on the respective road, not for the actual road type. The type is differentiated according to 15 characteristics.	 1 = Highway fast 2 = Highway medium 3 = Highway slow 4 = Federal Highway fast 5 = Federal Highway medium 6 = Federal Highway slow 7 = Country Road fast 8 = Country Road medium 9 = Country Road slow 10 = City Road fast 11 = City Road fast 11 = City Road slow 12 = City Road slow 13 = Ferry 14 = is not assigned 15 = Special cases such as zone 30, zone 10, pedestrian zones, forest roads (often these roads are not passable) 	Short Integer
Standard	TypRueck	Road type in direction To → From regarding the nodes. See column TypHin.	See column TypHin.	Short Integer

Standard	Kat	The category reflects the importance of the street. The smaller the number, the more important the street. Traffic data is available for categories 1 to 6, in some cases also for other categories.	1 = Category 1 (highest importance) 2 = Category 2 3 = Category 3 4 = Category 4 5 = Category 5 6 = Category 6 (lowest importance)	Short Integer
Standard	Von	Initial node	Corresponds to the From-node from the "Strassen" layer of the Digital Data Streets	Integer
Standard	Nach	End node	Corresponds to the To-node from the "Strassen" layer of the Digital Data Streets	Integer
Standard	kfz_dido_hin	Absolute traffic volume of all vehicles per day. Direction From → To	Sum of pkw_dido_hin and lkw_ges_dido_hin	Integer
Standard	pkw_dido_hin	Absolute traffic volume of cars per day. Direction From \rightarrow To		Integer
Standard	lkw_ges_dido_hin	Absolute traffic volume of all trucks per day. Direction From \rightarrow To		Short Integer
Standard	lkw_s_dido_hin	Absolute traffic volume of class S trucks per day. Direction From \rightarrow To	S Lkw < 3,5t	Short Integer
Standard	lkw_m_dido_hin	Absolute traffic volume of class M trucks per day. Direction From \rightarrow To	M Lkw 3,5 to 7,5t	Short Integer
Standard	lkw_l_dido_hin	Absolute traffic volume of class L trucks per day. Direction From \rightarrow To	L Lkw 7,5 to 12t	Short Integer

Standard	lkw_xl_dido_hin	Absolute traffic volume of class XL trucks per day. Direction From \rightarrow To	XL Lkw > 12t	Short Integer
Standard	kfz_dido_rueck	Absolute traffic volume of all vehicles per day. Direction To → From	Sum of pkw_dido_rueck and lkw_ges_dido_rueck	Integer
Standard	pkw_dido_rueck	Absolute traffic volume of cars per day. Direction To \rightarrow From		Integer
Standard	lkw_ges_dido_rueck	Absolute traffic volume of all trucks per day. Direction To → From		Short Integer
Standard	lkw_s_dido_rueck	Absolute traffic volume of class S trucks per day. Direction To \rightarrow From	S Lkw < 3,5t	Short Integer
Standard	lkw_m_dido_rueck	Absolute traffic volume of class M trucks per day. Direction To → From	M Lkw 3,5 to 7,5t	Short Integer
Standard	lkw_l_dido_rueck	Absolute traffic volume of class L trucks per day. Direction To \rightarrow From	L Lkw 7,5 to 12t	Short Integer
Standard	lkw_xl_dido_rueck	Absolute traffic volume of class XL trucks per day. Direction To \rightarrow From	XL Lkw > 12t	Short Integer

4.2 Further specifications

In addition to the standard specification, the following specifications are available:

- Daily values DiDo (standard specification)
- Average daily traffic volume, 1 value per 24h
- 1 day category: Tue-Thu on average
- Daily values all weekday types
- Average daily traffic volume, 1 value per 24h.
- 5 day categories: Mon, Tue-Thu, Fri, Sat, Sun

• Daily values and peak hours DiDo

• Average traffic volume, 1 value per 24h + hourly individual values for morning and evening peak (6 – 9 a.m. and

4-6 p.m. respectively)

• 1 day category: Tue-Thu on average

· Daily values and peak hours - all weekday types

• Average traffic volume, 1 value per 24h + hourly individual values for morning and evening peak (6 – 9 a.m. and 4 – 6 p.m. respectively).

• 5 day categories: Mon, Tue-Thu, Fri, Sat, Sun

Hourly values DiDo

- Average traffic volume, 24 values per 24h
- 1 day category: Tue-Thu on average

• Hourly values - all weekday types

• Average traffic volume, 24 values per 24h

• 5 day categories: Mon, Tue-Thu, Fri, Sat, Sun

Examples: Contents of the specifications Daily Values DiDo, Hourly Values DiDo as well as Daily Values and Peak Hours DiDo in Comparison

Specification	Column name	Content	Description	Data type
 Daily values DiDo Hourly values DiDo Daily values and peak hours DiDo 	ID	Unique identification number for the object	Corresponds to the ID from the "Strassen" layer of the Digital Data Streets. The IDs have duplicates because values are given for outward and return.	Integer
 Daily values DiDo Hourly values DiDo Daily values and peak hours DiDo 	Von	Initial node	Corresponds to the From- node from the "Strassen" layer of the Digital Data Streets	Integer
 Daily values DiDo Hourly values DiDo Daily values and peak hours DiDo 	Nach	End node	Corresponds to the To-node from the "Strassen" layer of the Digital Data Streets	Integer
 Hourly values DiDo Daily values and peak hours DiDo 	Binnenverkehr	Car frequencies within a district	Number of traffic density of cars that do not exceed their district (one district corresponds to an average of approx. 8000 inhabitants)	Integer
 Daily values DiDo Hourly values DiDo Daily values and peak hours DiDo 	PKW_DiDo_24h	Car traffic load on weekdays (Tuesday- Thursday) Average	Average traffic density of cars on a working day	Integer
 Daily values DiDo Hourly values DiDo Daily values and peak hours DiDo 	LKW_DiDo_24h	Truck traffic load on weekdays (Tuesday- Thursday) Average	Average traffic density of trucks on a working day	Integer
Daily values and peak hours DiDo	PKW_DiDo_h6-8	Car traffic load on weekdays (Tuesday - Thursday 6-8 a.m.)	Average traffic density of cars on a working day (Tuesday - Thursday) each at 6, 7 and 8 a.m.	Integer
• Daily values and peak hours DiDo	PKW_DiDo_h16-18	Car traffic load on weekdays (Tuesday - Thursday 4 - 6 p.m.)	Average traffic density of cars on a working day (Tuesday - Thursday) each at 4, 5 and 6 p.m.	Integer
• Daily values and peak hours DiDo	LKW_DiDo_h6-8	Truck traffic load on weekdays (Tuesday - Thursday 6 - 8 a.m.)	Average traffic density of trucks on a working day (Tuesday - Thursday) each at 6, 7 and 8 a.m.	Integer

PTV Validate Germany

Content and field description

• Daily values and peak hours DiDo	LKW_DiDo_h16-18	Truck traffic load on weekdays (Tuesday - Thursday 4 - 6 p.m.)	Average traffic density of trucks on a working day (Tuesday - Thursday) each at 4, 5 and 6 p.m.	Integer
Hourly values DiDo	PKW_DiDo_h0 - PKW_DiDo_h23	Car traffic load Tuesdays - Thursdays in 24- hour cycle	24 columns with number of traffic density cars per hour on a working day	Integer
Hourly values DiDo	LKW_DiDo_h0 - LKW_DiDo_h23	Truck traffic load on Tuesdays - Thursdays in a 24- hour cycle	24 columns with number of traffic density trucks per hour on a working day (24 columns)	Integer